Lung cancer remains the leading cause of cancer-associated death in the United States and worldwide. Patients with a subtype called lung adenocarcinoma (LUAD) have benefited from the development of new targeted medicines, but the search for effective new therapies for another subtype called lung squamous cell carcinoma (LSCC) has largely come up short.
To learn more about the biological basis of LSCC, a team led by researchers from the Broad Institute of MIT and Harvard and the National Cancer Institute’s Clinical Proteomics Tumor Analysis Consortium (CPTAC), including collaborators from the Baylor College of Medicine, have developed the largest and most comprehensive molecular map to date of LSCC. Their effort, described in Cell, brings proteomic, transcriptomic, and genomic data together into a detailed “proteogenomic” view of LSCC. Analysis of that data has revealed potential new drug targets, immune regulation pathways that might help the cancer evade immunotherapies, and even a new molecular subtype of LSCC. Data from the study is available on the CPTAC portal.