• Academic
  • Boston

Boston Children's Hospital

The Melero-Martin laboratory seeks multiple highly motivated post-doctoral research fellows to investigate the mechanism by which vascular networks are formed from pluripotent stem cells and to develop novel approaches to therapeutic vascularization and tissue regeneration. Up to four postdoctoral fellow positions are available to work on the following NIH-funded projects:

Project 1 – Vascular niche bioengineering for human bone regeneration. Goal: to elucidate the mechanisms by which blood vessels regulate the osteogenic activity of human mesenchymal stem cells and to develop new therapeutic strategies to regenerate bone.

Project 2 – Enhancing endothelial cell engraftment via transplantation of exogenous mitochondria. Goal: To dissect the mechanism by which mitochondria transfer renders cytoprotection in endothelial cells and to elucidate the role of autophagy and mitophagy upon the transfer of mitochondria.

Project 3 – Regulation of endothelial cell specification. Goal: To dissect the activity of the transcription factor ETV2 to drive endothelial cell specification in human pluripotent stem cells.

Project 4 – Vascular networks genetically engineered for protein drug delivery. Goal: To establish the feasibility of using bioengineered drug-secreting vascular networks to treat a clotting deficiency.

All work will involve human stem cell culture, molecular biology, and mouse xenograft models.


Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Lin RZ, Moreno-Luna R, Li D, Jaminet SCS, Greene AK, Melero-Martin JM. Proc Natl Acad Sci USA 2014; 111(28):10137-10142.

Host non-inflammatory neutrophils mediate the engraftment of bioengineered vascular networks. Lin RZ, Lee CN, Moreno-Luna R, Neumeyer J, Piekarski B, Zhou P, Moses MA, Sachdev M, Pu WT, Emani S, Melero-Martin JM. Nat Biomed Eng 2017; 1(6):0081.

Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA. Wang K, Lin RZ, Hong X, Ng AH, Lee CN, Neumeyer J, Wang G, Wang X, Ma M, Pu WT, Church GM, Melero-Martin JM. Sci Adv 2020; 6, eaba7606

Bioengineering hemophilia A-specific microvascular grafts for delivery of full-length factor VIII into the bloodstream. Neumeyer J, Lin RZ, Wang K, Hong X, Hua T, Croteau SE, Neufeld EJ, Melero-Martin JM. Blood Adv 2019; 3(24):4166-4176


Ph.D., Sc.D., or equivalent degree (or soon to be completed)
A record of innovative publications (first-authored publications in peer-reviewed journals)
Experience with stem cell culture, molecular biology, and animal models is highly desirable
Independent in scientific research and writing, self-motivated, and ethical
Excellent communication and organizational skills
Strong interest in regenerative medicine


Applicants should send a CV, a brief statement of interest, and contact information for three references to Dr. Melero-Martin (meleromartinlabopportunities@gmail.com). Salary will be commensurate with experience.

Boston Children’s Hospital is an Equal Opportunity / Affirmative Action Employer. Qualified applicants will receive consideration for employment without regard to their race, color, religion, national origin, sex, sexual orientation, gender identity, protected veteran status, or disability.

To apply for this job email your details to meleromartinlabopportunities@gmail.com